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ABSTRACT   The inefficient management of wastewater generated from agro-based  

industries has become a cause of environmental degradation. Treated agro-

based wastewaters (TAWs) are characterized by higher nutrients load and 

therefore, utilizable in the agriculture and horticulture as irrigation source.  

Agricultural reuse of TAWs is the most common practice done by the farmers of 

developing countries.  Using freshwater for substrate wetting has been creating 

an extra load on our drinking water resources. Globally, a huge volume of 

freshwater is utilized for substrate formulation in the commercial mushroom 

cultivation and integration of TAWs with mushroom cultivation has presented 

improvements in the mushroom productivity, signifying their cultivation more 

profitable. Furthermore, spent substrates can be used for biogas production, 

animal feed for mature castrated male sheep, post-weaning calves feeding,  

biodiesel production, bioethanol production, reducing sugar production,  

biofertilizer production, methane production, butanol production, etc. This 

book chapter deals with sustainable approaches to the potential use of TAWs in 

the formulation of mushroom’s substrate material along with efficient  

management of spent mushroom substrate.  
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Introduction 
 

Mushrooms are macro-fungi existing on the earth for 300 million years. As a foremost part of  

animal nutrition, they have been a good source of food and medicinal products (Valverde et al., 

2015; Royse et al., 2017). Most of the edible and medicinal mushrooms can be grown on the  

selective type of agricultural wastes including, manure, sawdust, hardwood, soy hulls, wheat 

straw, rice straw, corn husk, peanut husk, wood lodges, mustard stem, crop leaves, and  

sugarcane bagasse, etc. (Grimm and Wösten, 2018). These substrates are known as bulk  

mushroom substrates and need further processing (nutrients addition) before application in the 

commercial cultivation. However, a substrate having specific and optimum contents of nitrogen, 

carbon, and minerals may be supportive for maximizing the growth and yield performance of 

mushroom as they can be easily broken assimilated by fungal mycelia (Bellettini et al., 2016). 

Therefore, substrate formulation is the first step in commercial mushroom cultivation which  

involves adjusting its nutrient content easily utilizable by mushrooms (Carrasco et al., 2018). For 

this, mushroom substrate/compost technology offers agricultural waste management through 

utilization as feedstock for large-scale mushroom production (Gyenge et al., 2016). Substrate  

formulation is achieved in a series of substantial steps such as substrate cutting, grinding,  

wetting, fertilizing, composting followed by pasteurization and sterilization. Sufficient water  

content in the substrate is essential for mushroom growth, therefore, freshwater is essentially 

used to wet the mushroom substrates commonly known as substrate wetting. It is estimated  

nearly 200 liters of fresh water are used to produce 1 Kg of white button mushroom (Udom et al., 

2016). Using freshwater for substrate wetting has been creating an extra load on our drinking 

water resources, therefore, there is a new interest in developing more efficient substrate  

formulating technologies by using treated agro-based wastewaters (TAWs) as an alternative of 

freshwater (Kalmış  et al., 2002; Kalmıs et al., 2008; Avni et al., 2017; Chang and Wasser, 2018).  

Various agro-based industries such as sugar mill, palm mill, distillery, sago, oil-producing, dairy, 

food processing, molasses-based alcohol and beverages, tea and coffee, crop product processing, 

and biofertilizer producing industries are known to generate highly nutritive and less toxic 

wastewaters (Rebah et al., 2007; Rattan et al., 2015; Sadh et al., 2018). The treated agro-based 

wastewaters (TAWs) have been recognized for their irrigational application in horticulture and 

agriculture (Kretschmer et al., 2002; Shuval, 2012). The nutrient content accumulated in the  

agricultural soils after irrigating with such TAWs helps to enhance the growth and productivity 

of crop plants. It is estimated that nearly 20% of Mexico, 26% of Pakistan, 30% of India, 50% of 

Ghana, and 80% of Hanoi’s agricultural land is being irrigated with both treated and untreated 

wastewaters generated from municipal and industrial sectors (Pedrero et al., 2010).  

The idea of integrating TAWs with mushroom cultivation is not new but only a few reports 
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(Kalmıs et al., 2008; Avni et al., 2017; Chang and Wasser, 2018) are currently available focusing on 

this aspect, therefore, it requires more attention for scientific exploration. The views in previously 

published reports deal with either utilizing such as TAWs for wetting mushroom substrate or 

blending some agro-based solid wastes with the mushroom substrate. However, not all kinds of 

wastewaters can be used for wetting the substrates, but only a few TAWs are suitable to  

formulate the substrate materials of both edible and semi-edible mushroom species. Following 

the above aspects, this book chapter focused on the potential utilization of TAWs with  

agricultural wastes to grow mushrooms and further management of the spent substrate. 

 

Waste decomposition and nutrients utilization by mushrooms 
 

The main carbon and nitrogen sources required for the growth of mushroom comes from dead 

animal and plants (lignocellulosic) biomasses (Sánchez, 2009). Nevertheless, dead animal and 

lignocellulosic biomasses have never been exhausted on the earth assisting mushrooms to be one 

of the most primitive and successful organisms. The growth of a mushroom is divided into two 

phases including spawn running or mycelium growth followed by flush production or vegetative 

growth where actual biomass is produced (Montoya et al., 2012; Bellettini et al., 2016). During the 

mycelium growth phase, the fungal spores start propagating and spreading over the substrate 

surface creating a threadlike network system. This mycelium network covers the substrate surface 

and secrets a number of extracellular enzymes resulting in the degradation of lignin and cellulose 

(Table 1 and Figure 1).  

Substrate type Enzyme(s) involved Degradation mechanism(s) 

Ligninolytic Phenoloxidases Hydroxylation, free radical 
action, mediator 

Peroxidases Production of quinones  
followed by ring fission 

Glucoseoxidases Production of hydrogen  
peroxide 

Methyltransferase Methylation of the carboxyl 
group 

Non-ligninolytic Aryl alcohol oxidase, Alde-
hyde reductase 

Production of aldehydes and 
alcohols 

Cytochrome P450 Hydroxylation 

Cellobiose dehydrogenase Fenton reaction 

Table 1. Mechanisms and enzymes involved in ligninolytic and non-ligninolytic substrate  
degradation by mushrooms. 
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The secretion of various intracellular and extracellular enzymes like peroxidases, ligninase,  

peroxidase, manganese, cellulases, pectinases, xylanases, and oxidases help them to breakdown 

the dead organic matter and convert them to lesser molecular and ionic forms which can be easily 

utilized by mushroom during its vegetative growth (Sánchez, 2009). Besides this, the process of 

breakdown is composite where multiple enzymes act to remediate a molecule from high  

molecular weight to low. These enzymes are induced by cytochrome P450 gene of fungi which 

have both ligninolytic and non-ligninolytic degradation capabilities (Kulshreshtha et al., 2014). 

The nutrients, ions, and water contents are transported from substrate to mushroom body by 

means of both active and passive mechanisms (Smith, 1984; Randive, 2012). Specific physical and 

biochemical responses and stabilization for various nutrients in the mushroom are accomplished 

by myco-degradation, myco-stabilization, and myco-stimulation by mycelia, while  

bioaccumulation and myco-volatilization by the mushroom body (Chanda et al., 2016). However, 

certain abiotic and biotic factors such as temperature, humidity, relative substrate moisture,  

luminescence, atmospheric pressure, substrate pH, electrical conductance, available energy as 

carbon/nitrogen contents, minerals, interacting pests and pathogens, etc. may affect the nutrient 

transfer mechanism of mushrooms (Kulshreshtha et al., 2014).  

There is an ultimate requirement of several micro and macronutrients for mushroom growth. In 

this regard, metal ions are transported to the mushroom body in the form of a metal-enzyme 

Figure 1. Mechanisms of lignocellulosic biomass degradation used by mushrooms. 
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complex. The process involves two sequential steps i.e. ion regulation and ion uptake in which 

certain fungal genes such as Vps, Rbt, Ftr, Fet, Fre, Sit, Zrt, Pho84, etc. The genes help in secreting 

the extracellular enzymes which help to bind and transport them into the fungal cell wall.  

However, these genes may vary according to the mushroom species. Therefore, there is an  

essential requirement metal ion in mushroom growth and virulence (Gerwien et al., 2017). Besides 

this, the C/N content of the substrate strongly regulates the decomposition process by  

mushrooms. It has been reported in recent studies that the amendment of C/N rich substrates 

and fertilizers actively affects the rates of substrate breakdown and further nutrient uptake 

(Migliore et al., 2012; Kumar et al., 2019).  

 

Nutrient values of treated agro-based wastewaters (TAWs) 
 

Even after secondary treatment of wastewater from agro-based industries, a non-negligible 

amount of such utilizable nutrients is left. Despite, farmers prefer to use them as irrigation water 

due to their high nutrient values which results in rapid soil fertilization and high crop yields 

(Gothwal et al., 2012). It is found that long term soil irrigation using treated wastewaters having 

has shown excessive micronutrient accumulation, which affects microbial diversity and plant 

growth. However, mixing these TAWs with the mushroom substrate is a one-time practice,  

therefore, lesser will be the chances of excessive micronutrient accumulation. Below are the  

elementary nutrient values of TAWs which makes them useful for mushroom’s substrate  

formulation. 

Organic load: Organic content of TAWs is the total biodegradable dry biomass present in the  

suspended form (Kretschmer et al., 2002). The organic contents of TAWs come from the processed 

agro-based materials (organic compounds, complexes, microorganisms, residual biomass, etc.). 

Moreover, plant-based materials such as plant leaves, root, stem, fruits, juice, extracts, litter are 

also helpful to enrich TAWs with organic load (Kumar et al., 2018). The most common parameters 

of organic load are biological oxygen demand (BOD) and chemical oxygen demand (COD).  

Organic load of TAWs presents in both fixed and non-fixed forms which have been playing a 

crucial role in providing fertilizer values to the crops through wastewater irrigation.  

Microorganisms continuously feed and breakdown organic particles. As a result of redox  

reactions of microbial enzymes, these particles are converted into smaller and utilizable (by plant) 

molecular forms (Kwak et al., 2009). Therefore, the organic content of TAWs may be helpful in 

increasing the mushroom’s substrate value, which may be helpful for increasing their growth and 

productivity. 

Micronutrients: The elements required in trace quantity for life are known as micronutrients.  

Despite the proper functioning and metabolism of fungi, they perform an essential role in  
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balanced mycelium growth. These elements include copper (Cu), iron (Fe), manganese (Mn), zinc 

(Zn), and molybdenum (Mo). Micronutrients are the foremost part of agro-based residues. TAWs 

contain sufficient micronutrients that can provide fertilization to the mushroom substrate. During 

the raw crop processing, these micronutrients are released in the wastewater. However, a  

significant amount of micronutrients is removed during the wastewater treatment process,  

therefore, TAWs are known to have a permissible level of micronutrients suitable for irrigation 

(Kumar et al., 2018).  These micronutrients play a critical role in microbial growth and  

development. 

Macronutrients: Macronutrients includes nitrogen (N), calcium (Ca), magnesium (Mg), sodium 

(Na), potassium (K), and phosphorus (P). Macronutrients essentially play an important role in 

fungal growth and development. N play role in constructing the genetic material and protein 

synthesis while, Ca, Mg, K, and P have their own specified roles in various metabolic, growth, 

pathogen defense, and virulence (Gothwal et al., 2012). In TAWs, a significant quantity of these 

nutrient elements present. Higher amounts of macronutrients in discharged wastewaters may  

contribute essentially to fungal growth.  

Other problems: Besides having the above utilizable contents, TAWs often come with numerous 

ion toxicity, heavy metals, microbial contamination, pesticide residues, and radioactive elements 

(Australia Standards, 2012). The fecal coliforms, fungi, bacteria, viruses, nematodes, protozoans 

are also the foremost part of discharged wastewaters.  

 

Integration of treated agro-based wastewaters (TAWs) with mushroom 

cultivation 
 

The integration of TAW with mushroom cultivation has given promising results. Agro-based 

substrates are supplemented with nutrients from different TAWs for enhanced mushroom 

productivity (Phan et al., 2012; Hanafi et al., 2018). However, there are only a few studies related 

to this, therefore, there is a strong need to explore the potential of certain TAWs in enhancing the 

nutrient values of mushroom substrates. The TAWs can be utilized as substrate moistening 

agents as an alternative to regular water supply (Figure 2 and Table 2). However, the substratum 

formulated by this method must be thoroughly sterilized before inoculated with mushroom 

spawn (BARC, 2018). Previously, certain experiments have been conducted to assess the effect of 

TAWs on mushroom productivity. Out of them, Wang et al. (2001) enhanced the efficiency of 

wheat straw by supplementing spent beer effluent for the cultivation of Pleurotus ostreatus  

mushroom. Olive mill wastewater was useful for the enrichment of wheat straw used to grow 

different Pleurotus sp. Kalmis and Sargin (2004). Distillery effluent was helpful for  

supplementation of wheat straw and bagasse used to grown three Pleurotus strains  
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Figure 2. Integrating agro-based industrial wastewater with mushroom cultivation. 

Effluent/wastewater Substrate Mushroom species Reference 

Spent beer effluent Wheat straw Pleurotus ostreatus Wang et al. (2001) 

Olive mill 
wastewater 

Wheat straw Pleurotus sp. Kalmis and Sargin (2004) 

Distillery effluent Wheat straw and bagasse Pleurotus florida Eger 
(EM 1303), Pleurotus 
pulmonarius (Fries) 
Quelet (EM 1302) and 
Pleurotus sajor-caju 
(Fries) Singer (EM 
1304) 

Pant et al. (2006) 

Maize wastewater Wheat straw Pleurotus ostreatus and 
Pleurotus floridae 

Loss et al. (2009) 

Agro-food industry 
wastes 

Wheat straw, cotton 
waste, and peanut shelf 

Pleurotus sp., Lentinula 
edodes 

Philippoussis and  
Diamantopoulou (2010) 

Olive mill waste Wheat straw Seven Pleurotus strains Ruiz-Rodriguez et al. (2010) 

Distillery 
wastewater 

Sugar cane bagasse Pleurotus flabellatus and 
Pleurotus sajor-caju 

Gothwal et al. (2012) 

Dairy wastewater Sugar cane bagasse Pleurotus flabellatus and 
Pleurotus sajor-caju 

Gothwal et al. (2012) 

Fruit packaging 
industry effluent 

Wheat straw Pleurotus ostreatus Karas et al. (2016) 

Table 2. Industrial wastewaters (effluents) used for the cultivation of mushrooms. 
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Pant et al. (2006). Besides this, maize processing wastewater, agro-food industry wastes, olive mill 

waste, distillery wastewater, dairy wastewater and fruit packaging industry effluent have been  

successfully tested for the cultivation of certain edible mushroom species (Loss et al., 2009;  

Philippoussis and Diamantopoulou, 2010; Ruiz-Rodriguez et al., 2010; Gothwal et al., 2012; Karas 

et al., 2016). 

 

Assets in sustainable development 
 

Besides the benefits of utilizing TAWs in mushroom cultivation, there are a few problems  

associated with integrating it. There might be the presence of certain heavy metals, toxins,  

pesticides, persisting aromatic hydrocarbons, etc. Therefore, prior testing and confirmation of 

their presence are recommended (EPA, 1993). However, the acceptable limits. Table 3 provides 

Australian Standards recommended by EPA for finished substrate/compost products (Australia 

Standards, 2012). However, not all kinds of TAWs may contain all these toxic substances in higher 

amounts, a better example is dairy, bakery and palm oil wastewater, they comprise most of the 

non-toxic constituents. The EPA recommends that the following Australian Standards be adopted 

in setting environmental goals and quality parameters for compost products: 

• AS 4454–2012 for compost, soil conditioners, and mulches 

• AS4419–2003 for foils for landscaping and garden use 

• AS 3743–2003 for potting mixes 

• AS/NZS 5024 (INT)–2005 for potting mixes, composts, and other matrices: examination for 

legionellae. 

Chemical contaminant Maximum permissible limit 

Aldrin 0.02 mg/Kg 

dieldrin 0.02 mg/Kg 

Arsenic 20.00 mg/Kg 

Cadmium 1.00 mg/Kg 

Chromium 100.00 mg/Kg 

Copper 150.00 mg/Kg 

Lead 150.00 mg/Kg 

Mercury 1.00 mg/Kg 

Nickel 60.00 mg/Kg 

Zinc 300.00 mg/Kg 

Glass, metal and rigid plastics 0.50 % dry matter (w/w) 

Plastics–light and flexible or film 0.05 % dry matter (w/w) 

Table 3. Australian Standards recommended by EPA for finished substrate/compost products 
(Sources: Australian Standards, 2012; EPA, 2019). 
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Further utilization of spent mushroom substrates 
 

SMS, which has less lignin due to the digestion process by extra-cellular lignocellulosic enzymes 

during mushroom production, is merit for biofuel production. The lower lignin content but high 

nitrogen and ash content make the SMS more easily digested by microbial degraders to yield 

more reducing sugars. Indeed, the resulting polysaccharides act as a suitable substrate for  

hydrolysis, since the production of SMS itself has served as a form of pre-treatment. Table 4  

provides previously published reports on the utilization of SMS for various purposes. These  

include biogas production, animal feed for mature castrated male sheep, post-weaning calves 

feeding, biodiesel production, bioethanol production, reducing sugar production, biofertilizer 

production, methane production, butanol production, etc. (Kumar et al., 2020). 

 

Conclusion 
 

Mushroom production represents a source of extra income for farmers and can be grown on a 

diverse range of lignocellulosic wastes including agricultural residues and agro-based industrial 

wastes. The spent mushroom substrates have great potential for bioenergy production. The left-

over material after cultivation can be used for the generation of biogas, biodiesel, and bioethanol, 

etc. Non-residual and non-fractional materials may also be used as a fed-stock for composting 

and using as an effective biofertilizer. 

Spent substrate Purpose Reference 

Wheat straw Biogas Bisaria et al. (1990) 
Wheat straw Mature castrated male sheep  

feeding 
Fazaeli and Masoodi 
(2006) 

Cotton waste-based  
substrate 

Biodiesel production Kwak et al. (2009) 

Hydrolysates of  
corncob-based substrate 

Bioethanol production Oguri et al. (2011) 

Sawdust Post-weaning calves feeding Kim et al. (2011) 
Wheat straw Sugar production Kapu et al. (2012) 
What straw Biogas production Sonia et al. (2013) 
Alkali treated wheat straw Reducing sugar and biofertilizer 

production 
Zhu et al. (2013) 

Dairy manure and wheat 
straw 

Modeling of methane production Shi et al. (2014) 

Yard trimmings and wheat 
straw 

Biogas production Lin et al. (2014) 

Wheat straw Butanol and biodiesel production Zhu et al. (2016) 

Table 4. Spent mushroom substrate (SMS) used for various purposes. 
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